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Resting-state fMRI provides a method to examine the functional network of the brain under spontaneous
fluctuations. A number of studies have proposed using resting-state BOLD data to parcellate the brain into
functional subunits. In this work, we present two state-of-the-art graph-based partitioning approaches, and
investigate their application to the problem of brain network segmentation using resting-state fMRI. The two
approaches, the normalized cut (Ncut) and the modularity detection algorithm, are also compared to the
Gaussian mixture model (GMM) approach. We show that the Ncut approach performs consistently better
than the modularity detection approach, and it also outperforms the GMM approach for in vivo fMRI data.
Resting-state fMRI data were acquired from 43 healthy subjects, and the Ncut algorithm was used to
parcellate several different cortical regions of interest. The group-wise delineation of the functional subunits
based on resting-state fMRI was highly consistent with the parcellation results from two task-based fMRI
studies (one with 18 subjects and the other with 20 subjects). The findings suggest that whole-brain
parcellation of the cortex using resting-state fMRI is feasible, and that the Ncut algorithm provides the
appropriate technique for this task.
ll rights reserved.
© 2010 Elsevier Inc. All rights reserved.
Introduction

Resting-state fMRI has been used to examine functional connec-
tions between cortical regions since the first presentation of the
method by Biswal et al. (1995). The approach typically uses task-free
time course information obtained using a blood oxygenation level
dependent contrast (BOLD) acquisitions (Ogawa et al., 1990) and
measures the temporal correlation between different regions within a
single subject over time. The resting-state fc-fMRI approach has been
used to investigate a number of basic neuroscience questions such as
the connectivity present in different brain states (Vincent et al., 2007;
Martuzzi et al., 2009) and the relationship between functional
connectivity and behavior (Hampson et al., 2006, 2004). This approach
also provides an opportunity to examine network properties in the
brain and to parcellate the brain into minimal functional subunits
based on the correlated BOLD signal. Parcellation of the cortex into
individual subunits based on resting-state data opens up the
possibility of developing a subunit atlas analogous to the Brodmann
areas but based on cortical function rather than cytoarchitecture. A
number of clustering techniques have been suggested for segmenting
the brain using resting-state fMRI, including independent component
analysis (ICA) (Damoiseaux et al., 2006; Chena et al., 2008; Luca et al.,
2006), Gaussian mixture model (GMM) (Golland et al., 2008), and
hierarchical clustering (Achard et al., 2006; Salvador et al., 2005), to
name a few. In this paper, we focus on clustering algorithms based on
graph theory. Graph theory is a common methodology for studying
complex networks (Boccaletti et al., 2006; Watts and Strogatz, 1998;
Achard et al., 2006; Sporns et al., 2007; Buckner et al., 2009). Many
recent applications of graph theory to brain network analysis have
focused on the small-world architecture (Watts and Strogatz, 1998).
Small-world networks allow highly efficient parallel information
processing for a low wiring cost (Latora and Marchiori, 2001). Such
networks have been identified in both structural and functional
analysis of brain data (Achard et al., 2006; Sporns et al., 2007). In
addition, graph theory also offers superb tools for partitioning
networks. Graph-based clustering approaches have gained popularity
in image segmentation (Shi andMalik, 2000; Boykov and Kolmogorov,
2004) and machine learning applications (Belkin and Niyogi, 2004).
Most recently, some of these techniques have also been applied to the
analysis of brain networks using resting-state fMRI (Thirion et al.,
2006; van den Heuvel et al., 2008; Schwartz et al., 2008).

Graph partitioning approaches can be divided into two major
categories. One set of algorithms attempts to solve a combinatorial
optimization problem and obtain a binary (integer) indicator function,
e.g., the max-flow/min-cut (Boykov and Kolmogorov, 2004) algo-
rithm. The advantage of these algorithms is that the indicator function
defines the partition directly. However, combinatorial optimization is
often very difficult to solve, and many minimization/maximization
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functionals are intractable for this kind of optimization. The other set
of algorithms instead relax the binary constraint and solve for a real
valued function. The relaxation makes the optimization problem
tractable and relatively easier to solve. The real valued function is later
converted to obtain the partition. However, to convert the real valued
function to the optimal binary (integer) solution is nontrivial.
Nevertheless we are able to obtain a solution that is very close to the
optimum. In thisworkwe investigate algorithms of the second kind. In
particular, we selected two graph partitioning algorithms, the
normalized cuts (Ncut) algorithm (Shi and Malik, 2000) and the
modularity detection algorithm (Newman, 2006b,a), and applied
them to segment resting-state BOLD based functional connectivity
data.We also applied theGMM(MaLanchlan and Peel, 2000) approach
in our experiment for comparison. The GMM is a probabilistic
approachwith the underlying assumption that the data has a Gaussian
density distribution. It is a robust unsupervised data clustering
approach and has been applied to resting-state fMRI data analysis
(Golland et al., 2008). The comparison between graph-based
approaches and the GMM would give us a more comprehensive
evaluation of the strengths and weaknesses of these algorithms when
working with resting-state fMRI data. A systematic comparison of the
algorithms using both synthetic and real resting-state fMRI data is
presented below. A group consistency measure based on the average
entropy is introduced for use as criteria to evaluate the performance of
the algorithms, and this is particularly valuable in applications such as
this where no ground truth is available. We show that the normalized
cut algorithm has the best overall performance, and that the
segmentation obtainedusing theNcut algorithm is themost consistent
across groups of subjects. In addition, we show that delineation based
on resting-state fMRI is highly consistent with delineation under task
conditions. The agreement provides compelling evidence that func-
tional parcellation of the brain can be revealed using resting-state fMRI
and that the parcellations are meaningful with respect to functional
task-based delineation of functional subunits in the brain. The paper is
organized as follows. In the Theory section, we review the two graph
partitioning algorithms. The generation of synthetic data and the
acquisition of two in vivo fMRI datasets are described in Materials and
methods. Parcellation results using in vivo data from two regions of
interest are presented in Experimental results with the performance
evaluation of the three selected algorithms.

Graph-based partitioning

A graph G consists of a set of vertices V={v1, v2,…vN} and a set of
edges E={e(i, j), vi, vj ∈ V}. Given an fMRI dataset, each voxel
corresponds to a vertex in V, and N is the total number of voxels. The
edges between two vertices are defined based on the functional
connectivity (e.g. correlation coefficients). If voxel vi and voxel vj are
functionally connected, then e(i, j)=1, otherwise e(i, j)=0. To better
characterize the differences in functional connectivity, a real value is
assigned to each edge, denoted as w(i, j), w(i, j)N0 if e(i, j)=1 and w
(i, j)=0 if e(i, j)=0.

We next define a few quantities that are commonly used in graph
partitioning algorithms. Given a graph G=(V, E), a two-way partition
of G is denoted as (A, ̅A), where A [ A = V and A \ A = F. The
indicator vector x=[x1, x2,… xN] of the partition is defined by,

xi =
1 if vi a A
0 if vi a A

:

�
ð1Þ

The N×Nweight matrixW has w(i, j) as its entries. d is the degree
vector, di=∑j w(i, j). The Laplacian of the graph is given by,

L i; jð Þ =
di if i = j;
−w i; jð Þ if e i; jð Þ = 1;
0 elsewhere:

8<
: ð2Þ
Vol (A)=∑vi∈A di is the volume of the set A, which is different
from the cardinality |A| of the set (total number of points).

Normalized cuts and spectral clustering

In the seminal paper by Shi and Malik (2000), the normalized cut
was proposed for segmenting natural images. A two-way normalized
cut is defined by

NcutðA;A Þ = cutðA;AÞ
VolðAÞ +

cutðA;AÞ
VolðAÞ ;

cutðA;AÞ =
X

vi a A;vj a A

w i; jð Þ;

ð3Þ

Normalizing the cut value by the total edge connection to all the
vertices in the graph removes the bias towards separating out small
set of points. Ncut (A, ̅A) can be written in a matrix form

NcutðA;AÞ = xTLx
xTd

+
xTLx

1−xð ÞTd :

It has been shown (Shi and Malik, 2000) that minimizing Ncut is
equivalent to minimizing the Rayleigh quotient given by

Q yð Þ = yTLy
yTDy

; ð4Þ

with the constraint that y is piecewise constant and yTd=0, and D is a
diagonal matrix, D(i, j)=di. By removing the piecewise constant
constraint of y, the minimum of Q(y) is achieved by setting y equal to
the smallest nontrivial eigenvector φ1 of the normalized Laplacian
L̃ = D− 1

2LD− 1
2. In the two-way case, the binary partition is obtained

by splitting φ1 at a chosen value τ. Several options are available: one
can choose 0 (sign cut), or the median of φ1 (bisection). In our
implementation we search for τ such that the corresponding indicator
vector x gives the best Ncut (A, ̅A). The discretization in R-way
segmentation is more complicated, and can be found by either
weighted K-means clustering (Bach and Jordan, 2004) or the method
proposed in Yu and Shi (2003). The normalized cut algorithm is very
closely related to spectral clustering, which uses the first nontrivial
eigenvector ψ1 (the Fiedler vector) of the graph Laplacian matrix L. In
fact, it has been shown that the Fiedler vector is the real valued
solution to the following minimization problem,

Average − cut Problem : min
cutðA;AÞ

jA j +
cutðA;AÞ

jA j

( )
: ð5Þ

The two optimizations differ in that one algorithm normalizes
using Vol(A), while the other one normalizes using |A|. There is some
evidence (Chung, 1997) from a spectral graph theoretical point of
view that the normalized Laplacian has better behavior than the
standard graph Laplacian.

Modularity detection

Arguing that the size of segments is not an appropriate partitioning
criteria, Newman (2006b) proposed the use of the so-called modularity
function tofind tightly connected communities in a graph. Themodularity
function measures the difference between the number of edges within a
community and the expected number of such edges. Therefore maximiz-
ing the modularity function helps find strongly connected structures
independent of the size. Themodularity matrix of a graph is defined to be

B i; jð Þ = w i; jð Þ− diTdj
2m

; ð6Þ

where 2m=∑ijw(i, j). The optimal solution is found by maximizing
xT Bx with the constraint |x|=1. Both a combinatorial algorithm



Table 2
Synthetic datasets.

SNR Configuration

A (balanced) B (unbalanced)

syn-data1 0.04 ✓

syn-data2 0.02 ✓

syn-data3 0.04 ✓
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(Clauset et al., 2004) and a spectral approach (Newman, 2006a) are
available for solving the problem. Here we are interested in the
spectral approach, where the real valued solution is the first
eigenvector of B which has the largest positive eigenvalue. The
splitting point is chosen to be 0 for a 2-way segmentation. One can
apply the algorithm recursively to divide the graph into multiple
subunits. Table 1 summarizes the optimization criteria, the matrices
that are essential for the optimization and the corresponding real
valued solutions of the three graph based partitioning algorithms.

Materials and methods

In this section, we first describe the generation of four synthetic
datasets. For the first three datasets, the data distribution is well
modeled. But for the last data set, we used experimental fMRI data
obtained in vivo, so we have no explicit control over the data
distribution. By using these two types of synthetic datasets, we get a
more comprehensive estimation of the performance of the algo-
rithms. The acquisition of two in vivo fMRI datasets is also presented
in this section, one is from a resting-state study and the other is from a
task-based study. Parameter selection for graph-based approaches is
discussed in Parameter selection, and the group consistency measure
we proposed is presented in Performance evaluation and group
consistency.

Synthetic data

Three sets of synthetic data were generated to compare the
performance of the three algorithms under different circumstances.
For each set, we created fifty different single slice fMRI data sets. The
image matrix size was 32×32, with 1200 time points for each time
course. The statistics computed in Experimental results were
averaged over the fifty data sets. The signal time course simulated
was a sinusoidal function at frequency f=0.05 Hz with a fixed phase
θ, and the additive noise is i.i.d. white Gaussian with standard
deviation 1. The noise corrupted time series is given by,

g tð Þ = h tð Þ + αn tð Þ = sin 2πft + θð Þ + αn tð Þ:

The time courses were sampled at TR=1.55s (to match the
parameters of the real fMRI acquisition). The signal to noise ratio,
SNR = jh tð Þ j 2

α24 jn tð Þ j 2, where T=1200 is the length of the time courses. The
one slice of fMRI data is divided into two parts according configuration
A or B shown in 1. The signal time courses for the two segments have
the same frequency but a phase difference of π

4. The purpose of
creating an unbalanced configuration B is to test if there exists any
bias towards equal-size partitioning from any of the three algorithms.
Table 2 shows the parameters for the three sets of synthetic data
(Fig. 1).

We also created one more synthetic dataset (syn-data4) from a
real fMRI dataset described in 3.2.1. This set includes 43 independent
slices of fMRI data that were collected from 43 healthy subjects. The
size of each slice is 28 by 28, and configuration A was used for this
dataset. Resting-state fMRI time courses from the intra-parietal sulcus
Table 1
Optimization and solution of the three graph based partitioning algorithms.

Algorithm Optimization target function Matrix
form

Real-valued
solution

Ncut
cut A;Að Þ
Vol Að Þ +

cut A;Að Þ
Vol Að Þ

xTLx
xT Dx eigenvector of ̃L

Average Cut
cut A;Að Þ

jA j +
cut A;Að Þ

jA j
xTLx
xT x eigenvector of L

Modularity
Detection

(No. of edges in A−expected
No. of edges in A)+(No. of edges
in ̅A−expected No. of edges in ̅A)

xTBx eigenvector of B
were randomly selected for one region, and time courses from the
visual cortex were randomly selected for the other region (there were
two subjects who had fewer than 392 voxels in the IPS and we
generated additional time courses by interpolation). All the resting-
state time courses were detrended and low-pass filtered.

In vivo fMRI data

The segmentation algorithms described above were applied to
both resting-state fMRI data and task-based fMRI data. In this manner,
we can test the hypothesis that the delineation of functional subunits
is invariant under different conditions, such as task or resting-state.

Resting-state fMRI
Imaging was performed on a 3T Siemens Trio scanner at the Yale

MRRC. A T1-weighted 3-plane localizer was used to localize the slices
to be obtained and T1 anatomic scans were collected in the axial-
oblique orientation parallel to the ac–pc line. Resting-state fMRI data
was obtained using a gradient echo T2⁎-weighted echo planar
imaging sequence, flip angle alpha=80, echo time TE=30 ms,
repetition time TR=1550 ms, 64×64 matrix, with 25 slices 6 mm
thick, skip 0 mm, 22×22 cm2 FOV, providing whole-brain coverage
with voxel size of 3.4 mm×3.4 mm×6 mm. Eight 6-min runs of
resting-state data were collected. 43 healthy right-handed subjects
participated in the study after giving informed written consent.

Task-based fMRI
Task-based fMRI data were collected for a study of BOLD signal

change between different sessions in a test/retest experiment (Buck et
al., 2008). Imaging was performed on a 3T Siemens Trio scanner at the
Yale MRRC. Functional data was obtained using gradient echo planar
imaging during tasks, flip angle alpha=80, echo time TE=30 ms,
repetition timeTR=2000ms, 64×64matrix,with24 slices 5mmthick,
20×20 cm2 FOV. High resolution anatomic scans were also acquired
using a 3D MPRAGE volume acquisition, alpha=15, TE=2.83 ms,
TR=1500ms, inversion time TI=800ms, 256×256×160matrixwith
voxel size 1.0×1.0×1.0 mm3. Each subject underwent the Stroop task
(Stroop, 1935). Twenty healthy subjects participated in the study. A
test/retest analysis of the fMRI data from this task has previously been
published (Buck et al., 2008).
Fig. 1. Left: configuration A, the two parts have the same number of voxels; Right:
configuration B, one part is seven times larger than the other.



Fig. 2. Relationship between classification errors and group consistency obtained using
synthetic data. X-axis: the total number of voxels that are wrongfully classified; Y-axis:
the group consistency measured by average entropy across fifty subjects (realizations).
Quantities of X and Y axes are positively correlated with Pearson correlation coefficient
r=0.9853.

Table 3
Classification errors from synthetic datasets.

K Ncut Modularity

σ σ

n
2 ξ 2ξ n

2 ξ 2ξ

syn-data1 20 23 23 23 41 38 37
50 12 12 12 15 14 14

100 8 8 8 10 10 9
syn-data2 20 152 130 129 220 199 194

50 222 84 84 110 103 100
100 246 65 65 76 72 72

syn-data3 20 55 78 83 451 417 421
50 35 52 55 380 312 311

100 36 49 51 362 300 280
syn-data4 20 5 5 6 188 74 53

50 17 19 20 137 59 43
100 36 36 33 115 50 46
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Preprocessing
Functional data was motion and slice timing corrected using SPM5.

A Gaussian kernel of FWHM 6 mm was applied for spatial smoothing.
The mean time courses from the white matter (WM) and the
cerebrospinal fluid (CSF) were calculated and the data were orthog-
onalized with respect to the two mean time courses and to the six
motion-related signals estimated by SPM5. After the orthogonalization,
linear trends were removed and lowpass filtering (b0.1 Hz) was
applied.

Region of interest

ROI 1: visual cortex
A mask of the primary visual cortex (Brodmann area 17) and the

secondary visual cortex (Brodmann area 18) was created based on the
Yale Brodmann Atlas (available at http://bioimagesuite.org). The mask
was mapped to each individual space and voxels within the mask were
recruited for the experiment. Because of the variation across individual
brains, the number of voxels N (3.4×3.4×6 mm3 resolution) inside
BA 17/18 varies from 583 to 1077.

ROI 2: intraparietal sulcus
A recently published task-based study by our group (Roth et al.,

2009) showed that the intraparietal sulcus is actively involved in
working memory tasks and that the specific task conditions can
subdivide this region into smaller functional subunits. A mask of the
intraparietal sulcus was made based on the activation result in the
MNI space. The mask was mapped to individual subject space and the
number of included voxels varies from 371 to 616 across subjects.

Parameter selection

A graph is constructed by connecting each vertex to its k
nearest neighbors in terms of functional distance. Denote the time

course at voxel vi as fi=[fi(1), fi(2),…,fi(T)], the functional distance

is given by ‖fi − fj‖ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

t fi tð Þ− fj tð Þ� �2q
. When fi, fj have unit length

(||fi||=||fj||=1), the functional distance is directly related to the
Pearson correlation coefficient corr(fi, fj), ||fi – fj|| 2=2–2corr(fi, fj).
The weight is defined using a Gaussian kernel, which is commonly
used in graph-based approaches,

w i; jð Þ = e
−

‖fi − fj‖

σ

� �2

:

The weight matrix W (or the Laplacian matrix L) is controlled by
two parameters, the number of nearest neighbors k and the scale
parameter σ. k controls the sparsity of the matrix, which is estimated
to be k / N. The scale parameter σ controls the decay of the Gaussian
kernel. When σ→0, W approaches an identity matrix; when σ→∞,
W becomes equivalent to an adjacency (binary) matrix. Since the
optimization defined by both graph-based algorithms depends only
on the weight matrix (see Table 1), choices of k and σ directly affect
the partitioning results.

In the experiment, we constructed a number of graphs using
different k and σ. kwas sampled at values such that the sparsity of the
matrix is approximately 0.02, 0.05 and 0.1. σ was sampled
proportional to the median of the functional distances. The median
of functional distances, denoted as ξ, was estimated over all pairs of
voxels. We set σ to equal to ξ/2, ξ and 2ξ for the synthetic data, and
for in vivo fMRI we had σ=ξ, because results from synthetic data
showed that partitioning results are much less sensitive to σ values.

Performance evaluation and group consistency

For synthetic datasets, performance of the algorithms was
evaluated based on the ground truth. However, we have no access
to the ground truth for real fMRI data, thus we could only evaluate the
performance indirectly. Assuming there truly exists a functional
division, then this division should remain stable for each subject, and
remain consistent across group of subjects. Under this assumption,
the consistency of partitioning across subjects can be used to evaluate
the performance of the algorithms.

In our experiment, the partitioning was performed in the
individual subject space of resolution 3.4375×3.4375×6 and nor-
malized to a reference space of resolution 3×3×3. For the sake of
simplicity, we assume the partitioning is two-way. The consistency
measure could be easily extended for multi-label cases. Let Zs=[zs(1),
zs(2),…,zs(N)] denote the label vector for subject s, and zs(i)∈{1,2}.
The probability of voxel vi being classified as subunit 1 is given by

Pr vi = 1ð Þ =
P

s δ zs ið Þ;1ð Þ
S

; ð7Þ

where δ(., .) is the Kronecker delta function. The uncertainty of label
assignment at a single voxel can be assessed by the discrete entropy,

H ið Þ = −
X2
c=1

Pr vi = cð Þlog Pr vi = cð Þð Þ: ð8Þ

http://bioimagesuite.org


Table 4
Best classification errors from synthetic datasets.

syn-data1 syn-data2 syn-data3 syn-data4

Ncut 8 65 36 5
Modularity 9 72 280 43
GMM 5 43 10 208

Table 5
Four sets of fMRI data.

ROI Condition

VC IPS Resting Task

fMRI-data1 ✓ ✓

fMRI-data2 ✓ ✓

fMRI-data3 ✓ ✓

fMRI-data4 ✓ ✓
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If vi is unanimously assigned to one subunit, then H(i)=0, and if
Pr(vi=1)=Pr(vi=2)=0.5, then H(i)=log(2)=0.6931. The cross
subject consistency is defined to be the average entropy over all
voxels,

H =
1
N

X
vi

H ið Þ: ð9Þ

The smaller the average entropy H, the better the agreement
between partitions across all subjects. Given the synthetic data, we
are able to examine the relation between classification error and
group consistency measured by the average entropy. Fig. 2 shows that
the classification error is positively correlated with the average
entropy. Therefore group consistency is a good measure of an
algorithm's efficacy to identify a subdivision.
Fig. 3. Entropy calculated from group segmentation results of fMRI-data1. High consistency
(large entropy value) shownwith the red color spectrum. (A) Results from the Ncut algorithm
entropy 0.3570; (C) results from the GMM, average entropy 0.5023.
Experiment results

Synthetic data

We applied the normalized cut algorithm, the modularity
detection algorithm and the GMM to the four synthetic datasets. The
classification errors were averaged over fifty independent realizations
(forty-three for syn-data4). Table 3 summarizes the error statistics of
the two graph-based approaches using different k and σ. Table 4 lists
the best classification errors achieved by all three algorithms.

Real fMRI data

In the experiments with real fMRI data, we were interested in
subdividing two regions of interest of the human cortex, namely the
(small entropy value) indicated by the white/yellow color spectrum, low consistency
, average entropy 0.1825; (B) results from themodularity detection algorithm, average



Table 6
Group consistency (H) from four sets of fMRI data.

fMRI-data1 fMRI-data2 fMRI-data3 fMRI-data4

Ncut 0.1825 0.1877 0.3866 0.3815
Modularity 0.3570 0.3192 0.4880 0.3575
GMM 0.5023 0.4888 0.4888 0.4772
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visual cortex (VC) and the intraparietal sulcus (IPS). The delineation
of the two ROIs was obtained using resting-state fMRI and task-
based fMRI data. We denoted the four sets of data as “fMRI-data1”,
“fMRI-data2”, “fMRI-data3” and “fMRI-data4”, respectively (see
Table 5 for explanation).

The segmentation was done in subject space so that each voxel in
the region of interest was assigned an integer label (1 or 2). The label
images were then transformed into the reference space of dimension
3×3×3 mm3 to obtain a group-wise segmentation. The labels in the
group-wise result were assigned by majority vote,

cT ið Þ = arg maxc c jPr vi = cð Þf g

We used the group consistency measure (defined in Performance
evaluation andgroup consistency) to evaluate the segmentation results.
Figs. 3 and 4 show the entropy (8) at each voxel of the group-wise
segmentation from all three algorithms. Table 6 summarizes the
average entropy. The Ncut algorithm has the overall best performance,
whereas the GMM algorithm has the worst group consistency among
the three. The segmentation by the Ncut algorithm shows the least
amount of red (where red indicates lower group consistency than
yellow) in Figs. 3 and 4, and it is tightly packed near the boundary of the
two subunits. On the contrary, the red region shown on the entropy
map based on the GMM results is much more diffuse.

One important goal in this work was to compare delineation of
functional subunits under different conditions (resting-state data
Fig. 4. Entropy calculated from group segmentation results from fMRI-data3. High consistency (
entropy value) shown with the red color spectrum. (A) Results from the Ncut algorithm, avera
0.4880; (C) results from the GMM, average entropy 0.4888.
versus fMRI data in task active and task-non-active areas). Fig. 5
shows the two-way segmentation of the visual cortex obtained using
the normalized cut algorithm. The task-based fMRI data were
acquired during a Stroop task. Note that although the visual cortex
was actively involved during the Stroop task, the task itself was not
designed to elicit functional differences in the visual cortex, thus this
can be thought of as a non-specific task condition. We see that the
results are highly consistent between the resting-state and the non-
specific task state. The same way of subdividing the visual cortex was
also shown by two other groups of investigators (Salvador et al., 2005;
Smith et al., 2009). Fig. 6 compares the segmentation results of the
intraparietal sulcus. The parcellations are also consistent across
conditions (i.e. task versus resting-state BOLD data). In this compar-
ison, we not only have results from resting-state (Fig. 6A) and non-
specific task state (Fig. 6B), but we also have results from a 3rd
experiment (working memory task (Roth et al., 2009)) that explicitly
delineated the functional subunits based on the particular task
conditions (Fig. 6C).
small entropy value) indicated by thewhite/yellow color spectrum, low consistency (large
ge entropy 0.3866; (B) results from the modularity detection algorithm, average entropy



Fig. 5. Group segmentation results of the visual cortex (VC). Both segmentations were obtained using the normalized cut algorithm. The colormap shows the classification of each
voxel with its probability. The green/blue spectrum indicates membership of group I, while the blue spectrum indicates 100% agreement across individuals, and green spectrum
indicates a little above 50% agreement across individual. The red/yellow spectrum indicates membership of group II. (A) Segmentation based on resting-state fMRI; (B)
segmentation based on task-based fMRI.
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Discussion

Ncut vs. modularity detection

According to Table 3, the normalized cut algorithm and the
modularity detection algorithm performed almost equally well for
syn-data1 and syn-data2, when the two sub-regions are of the same
size. However for syn-data3, where one sub-region is seven times
bigger than the other, the modularity detection algorithm failed to
separate the two sub-regions. The failure of the modularity detection
algorithm in the unbalanced case could be problematic for brain
segmentation applications. The Ncut algorithm still attained reason-
able results for syn-data3, and it outperformed the modularity
detection algorithm significantly for syn-data4. In experiments with
real fMRI data, Table 6 shows that the group results obtained using the
Ncut algorithm are more consistent than those obtained using the
modularity detection algorithm.

Non-Gaussian mixture distribution

It is not surprising to see that the GMM algorithm, which had the
least clustering errors for syn-data1, syn-data2 and syndata3, failed to
separate the two regions in syn-data4. As for syn-data1(2,3), the
datasets were constructed using the Gaussian mixture model,
therefore the GMM is the optimal algorithm to identify the
compositing clusters. However, for syn-data4 constructed from
resting-state fMRI data, the distribution of the data points is quite
different. To the author's knowledge, there are no published reports
where investigators have attempted to model the distribution
explicitly. This difference in the data distribution also makes the
graphs constructed based on syn-data1(2,3) quite different from the
graphs constructed based on syn-data4. We can use the degree vector
d to illustrate the difference. The left panel in Fig. 7 shows the
histogram of d from one syn-data1 realization, and the middle panel
shows the histogram of d from one syn-data4 realization. We can see
that when the data follows a Gaussian mixture model, the degree
vector distributed approximately according to an exponential distri-
bution (red curve in the rightmost panel). But with real fMRI data, the
distribution of the degree vector resembles a gamma distributionwith
its shape parameter equal to two (or higher) (blue curve in the
rightmost panel).

Based on the statistics shown in Table 6, we carried out a paired t-
test on the difference of the group consistency between GMM and
Ncut, and obtained p=0.0443. In other words, in working with real
fMRI data, Ncut works significantly better than GMM. Graph-based
approaches are in general more versatile in situations where the data
distribution is unknown, because the segmentation is based on
pairwise connections rather than any assumptions about the global
data distribution.

Parameter selection

Tables 3 and 4 show that the value of σ does not significantly affect
the performance of the graph based approaches. It is reasonable to take
σ equal to themedian of the functional distances (σ=ξ). However the
neighborhood size k plays a more important role. Table 3 shows that
for syn-data1,2,3, the classification error decreases as k increases.
Therefore for datasets with a Gaussian mixture distribution, it is
desirable to choose k as large as possible. However for real fMRI data,
the rule changes. Table 3 shows that the normalized cut algorithm
achieved the best classification error at the smallest k value (k=20). It
is clear that smaller k is preferred. But for the modularity detection
algorithm, the classification error depends on bothσ and k, and it is not
obvious how one should choose the combination. In our experiments
with real fMRI datasets, the best group consistency was achieved by
using small k (k/N=0.02), for both the Ncut algorithm and the
modularity detection algorithm. When working with fMRI datasets of
larger size (NN10 K), one could choose an even smaller k/N ratio.



Fig. 6. Group segmentation results of the intra-parietal sulcus (IPS). All three segmentations were obtained using the normalized cut algorithm. The colormap shows the
classification of each voxel with its probability. The green/blue spectrum indicates membership of group I, while the blue spectrum indicates 100% agreement across individuals, and
green spectrum indicates a little above 50% agreement across individual. The red/yellow spectrum indicates membership of group II. (A) Segmentation based on resting-state fMRI;
(B) segmentation based on a Stroop task fMRI study; (C) segmentation based on memory update/refresh task fMRI study.
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Resting vs. task

Figs. 5 and 6 show that the delineation of functional subunits in the
two regions of interest is highly consistent between resting-state and
task-based conditions. The agreement between different conditions
provides strong support to the claim that functional organization in
terms of subunit delineation is maintained in both resting-state and in
Fig. 7. Histogram of the degree vector d. Left: the corresponding graph was constructed base
based on one realization from syn-data4, which was from resting-state fMRI. Right: blue
distribution.
task-based conditions, and can be revealed using resting-state fMRI. It
is important to note that there is substantial evidence that the
strength of the connections between different subunits can change
with task (Hampson et al., 2004, 2006) or brain state (Bartels and Zeki,
2005; Vincent et al., 2007; Greicius and Menon, 2004), but the results
here suggest that the underlying functional subunits do not change
with task.
d on one realization from syn-data1. Middle: the corresponding graph was constructed
curve: gamma distribution with shape parameter equal to 2; red curve: exponential
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Conclusion

We have presented a review of state-of-the-art graph-based
partitioning algorithms and two such algorithms have been applied
to the brain functional subunit parcellation problem with resting-
state fMRI data as input. The two graph-based approaches were
compared against each other and also to the GMM approach that is
commonly used for clustering. We found that one of the graph-based
approaches—the normalized cut algorithm, outperformed the other
two algorithms for the in vivo fMRI data, in the sense that the
segmentation was the most consistent across subjects. Additionally,
the results showed that the subdivision into small functional subunits
of one sensory brain region and a higher cognitive brain region
remained invariant under resting-state or task-based conditions. This
work has shown the feasibility of using an algorithm such as the Ncut
to parcellate the cortex into functional subunits using resting-state
BOLD data. This approach can potentially allow us to build a whole-
brain atlas of minimal functional subunits that would provide a much
more relevant context for describing fMRI results than current atlases
such as the Brodmann atlas. Furthermore, while the majority of
connectivity based analyses rely on seed-to-seed connectivity or
seed-to-whole brain connectivity analysis, both of these approaches
are highly sensitive to the definition of the boundaries of the seed
region. Various approaches including functional task-based or
anatomic based seed definitions have been used. Anatomic based
seed definitions are very problematic in cortical or subcortical regions
that do not have clear anatomic boundaries. Seed regions based on
functional tasks appear to work well but functional localizers are not
always available for all cortical regions and thus this approach does
not allow analysis of the whole brain. If the region used as a seed
contains a mixture of different time-courses (i.e. is poorly defined
with respect to local connectivity) then correlations with this seed
may not be meaningful. Furthermore, for whole-brain survey studies
such as in drug trials or genetic phenotyping studies neither the task-
based functional approach nor the anatomic delineation of seed
regions are available across the whole-brain and hence both methods
are inadequate for such studies. Many recent studies examining
network properties of the brain through connectivity also rely on
some predefined nodes, through anatomic atlas or function once
again, to enter as starting points. The approach presented here can be
used to delineate minimal subunits as node definitions potentially
withmoremeaningful network properties extracted from these nodes
that have uniform time-courses. In summary the approach presented
in this work could have a significant impact in producing an atlas of
minimal functional subunits (minimal in the sense that they are as
small as possible while maintaining across subject consistency) for
use in reporting fMRI task-based results, for providing starting regions
of interest for further connectivity analyses of diseased or healthy
populations, and for further analysis of network properties in the
brain.
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